

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level In Chemistry (WCH15) Paper 01 Unit 5: Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2023 Question Paper Log Number: P72995A Publications Code: WCH15_01_MS_2310 All the material in this publication is copyright. © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Mark
1	The only correct answer is D (zinc)	(1)
	<i>A</i> is incorrect because cobalt forms a stable Co^{2+} ion with incompletely-filled d-orbitals	
	B is incorrect because copper forms a stable Cu^{2+} ion with incompletely-filled d-orbitals	
	\boldsymbol{C} is incorrect because nickel forms a stable Ni^{2+} ion with incompletely-filled d-orbitals	

Question number	Answer	Mark
2	The only correct answer is $D(VO_3^- \text{ and } VO_2^+)$	(1)
	<i>A</i> is incorrect because chromium has oxidation numbers +6 and +3 respectively	
	<i>B</i> is incorrect because copper has oxidation numbers +1 and +2 respectively	
	<i>C</i> is incorrect because manganese has oxidation numbers +3 and +4 respectively	

Question number	Answer	
3	The only correct answer is D (6)	(1)
	<i>A</i> is incorrect because although there are two different ligands, there are 6 atoms bonded to the central ion	
	B is incorrect because the charge on Cr is $3+$ but there are 6 atoms bonded to the central ion	
	<i>C</i> is incorrect because although there are 4 ligands, there are 6 atoms bonded to the central ion	

Question number	Answer		
4	The only correct answer is C (Ni ²⁺)	(1)	
	<i>A</i> is incorrect because Cu^{2+} gives a blue precipitate with aqueous sodium hydroxide and with aqueous ammonia		
	B is incorrect because the precipitate formed with Fe^{2+} and aqueous ammonia is insoluble in excess ammonia		
	D is incorrect because V^{2+} is a purple solution		

Question number	Answer	Mark
5	The only correct answer is B ($[Zn(H_2O)_6]^{2+} + 2NH_3 \rightarrow Zn(OH)_2(H_2O)_4 + 2NH_4^+$)	(1)
	<i>A</i> is incorrect because the precipitate should not have a positive charge and the charges do not balance	
	<i>C</i> is incorrect because $[Zn(NH_3)_4(H_2O)_2]^{2+}$ is formed when the precipitate dissolves in excess aqueous ammonia	
	D is incorrect because $Zn(NH_3)_4(H_2O)_2$ should have a 2+ charge and the equation is not balanced	

Question number	Answer	
6	The only correct answer is B (Mn^{2+} acts as a catalyst; concentration of reactants decreases)	(1)
	<i>A</i> is incorrect because the kinetic energies of the particles do not change	
	<i>C</i> is incorrect because MnO_4^- is not a catalyst and the kinetic energies of the particles do not change	
	D is incorrect because MnO_4^- is not a catalyst	

Question number	Answer	Mark
--------------------	--------	------

7	The	e only correct answer is C (ΔS_{total} and $\ln K$)	(1)
	A	is incorrect because E^{Θ}_{cell} is not directly proportional to $\Delta_{r}H$	
	B	is incorrect because E^{Θ}_{cell} is not directly proportional to $\Delta_r H$ or to $\ln RT$	
	D	is incorrect because E^{Θ}_{cell} is not directly proportional to $\ln RT$	

Question number	Answer	Mark
8	The only correct answer is A (standard reduction potential; most negative to most positive)	(1)
	B is incorrect because the electrochemical series has the most negative standard electrode potential first	
	<i>C</i> is incorrect because standard cell potentials are determined from two standard electrode potentials	
	D is incorrect because standard cell potentials are determined from two standard electrode potentials and the electrochemical series has the most negative standard electrode potential first	

Question number	Answer	Mark
9	The only correct answer is A (H ₂ + 2OH ⁻ \rightarrow 2H ₂ O + 2e ⁻)	(1)
	B is incorrect because H^+ ions cannot be produced in an alkaline solution	
	C is incorrect because H^+ ions cannot be produced in an alkaline solution	
	D is incorrect because H^+ ions cannot be produced in an alkaline solution	

Question number	Answer	
10	The only correct answer is B (negative; positive)	(1)
	<i>A</i> is incorrect because $E_{cell}^{\circ} = E_{rhs} - E_{lhs}$ so $0.17 - (-0.40) = +0.57$ V or $0.40 - (-0.17) = +0.57$ V	
	<i>C</i> is incorrect because $E_{cell}^{\bullet} = E_{rhs} - E_{lhs}$ so $0.17 - (-0.40) = +0.57$ V or $0.40 - (-0.17) = +0.57$ V	
	D is incorrect because $E_{cell}^{\circ} = E_{rhs} - E_{lhs}$ so $0.17 - (-0.40) = +0.57$ V or $0.40 - (-0.17) = +0.57$ V	

Question number	Answer		
11	The only correct answer is C (magnesium)	(1)	
	<i>A</i> is incorrect because $1.635 \div 65.4 = 0.025$ mol of zinc produced which gives a relative atomic mass of 24.3 for G		
	B is incorrect because $1.635 \div 65.4 = 0.025$ mol of zinc produced which gives a relative atomic mass of 24.3 for G		
	D is incorrect because $1.635 \div 65.4 = 0.025$ mol of zinc produced which gives a relative atomic mass of 24.3 for G		

Question number	Answer					
12	only correct answer is D (phenylamine)					
	<i>A</i> is incorrect because the lone pair of electrons on N in ammonia is not delocalised so can be donated more easily					
	B is incorrect because the lone pair of electrons on N in butylamine is not delocalised so can be donated more easily					
	<i>C</i> is incorrect because the lone pair of electrons on <i>N</i> in ethylamine is not delocalised so can be donated more easily					

Question number	Answer					
13	only correct answer is B (H ₂ NCH(CH ₃)COO ⁻)					
	<i>A</i> is incorrect because this is the structure of the uncharged molecule					
	<i>C</i> is incorrect because this structure would exist at pH less than 6.0					
	D is incorrect because this is the structure of the zwitterion					

Question number	Answer					
14	The only correct answer is A (CH ₂ =CHCOOH)	(1)				
	<i>B</i> is incorrect because phenol does not react with ethanol					
	<i>C</i> is incorrect because 2-propen-1-ol does not react with sodium hydroxide or ethanol					
	D is incorrect because ethanoic acid does not react with hydrogen in the presence of a nickel catalyst					

Question number	Answer					
15(a)	he only correct answer is A (further substitution by a nitro group occurs)					
	<i>B</i> is incorrect because nitrobenzene does not decompose at 80°C					
	<i>C</i> is incorrect because fuming sulfuric acid is needed for the substitution of SO ₃ H					
	<i>D</i> is incorrect because nitric acid does not decompose at 80°C					

Question number	Answer Ma						
15(b)	ne only correct answer is C (Sn and concentrated HCl(aq) are added first, then NaOH(aq) is added at the end)						
	<i>A</i> is incorrect because the acid and alkali would react to form a salt if they are added together						
	B is incorrect because the acid and alkali would react to form a salt if they are added together						
	D is incorrect because dilute hydrochloric acid would not react quickly enough with the tin						

Question number	Answer			
15(c)	The only correct answer is B \downarrow \downarrow A is incorrect because the chlorine is not bonded covalently to the nitrogen C is incorrect because the chlorine is not bonded covalently to the nitrogen	(1)		
	D is incorrect because the charge should be on the nitrogen on the right not the nitrogen on the left			

Question number	Answer					
15(d)	The only correct answer is B (alkaline)	(1)				
	<i>A</i> is incorrect because a phenoxide ion is needed for the reaction and that is produced in alkaline solution					
	<i>C</i> is incorrect because a phenoxide ion is needed for the reaction and that is produced in alkaline solution					
	D is incorrect because a phenoxide ion is needed for the reaction and that is produced in alkaline solution					

Question number	Answer					
16	nly correct answer is D (8 (cm ³))					
	<i>A</i> is incorrect because 2 cm ³ of methane reacts with 4 cm ³ of oxygen					
	B is incorrect because 4 cm^3 of methane would react with 4 cm^3 of oxygen if they reacted in a 1:1 mole ratio					
	C is incorrect because 6 cm ³ would be the volume of argon if methane reacted with oxygen in a 1:1 mole ratio					

Question number	Answer					
17	he only correct answer is A (x is 30 and y is 40)					
	B is incorrect because water is a liquid at room temperature					
	<i>C</i> is incorrect because 10 cm ³ of but-1-ene reacts with 60 cm ³ of oxygen to form 40 cm ³ of carbon dioxide so there is an initial decrease of 30 cm ³					
	D is incorrect because 10 cm ³ of but-1-ene reacts with 60 cm ³ of oxygen to form 40 cm ³ of carbon dioxide so there is an initial decrease of 30 cm ³ and water is a liquid at room temperature					

(Total for Section A = 20 marks)

Section B

Question Number	Answer	Answer Additional Guidance				
18(a)	COMMENT Ignore any electron flow unless shown on the salt bridge		Example of diagram: hydrogen gas → platinum electrode solution containing H*(aq)	copper salt bridge copper solution containing Cu ²⁺ (aq)	(5)	
	 Hydrogen half-cell: (M1) 1 mol dm⁻³ H⁺(aq) and platinum (black) electrode 	(1)	Allow 1 mol dm ⁻³ hydro Allow 0.5 mol dm ⁻³ sulf	l drawn on the right ed once in M1 and M4 if both are 1 mol dm ⁻³ chloric acid / HCl / nitric acid / HNO ₃		
	 (M2) hydrogen gas in suitable apparatus at 100 kPa / 1 × 10⁵ Pa (at 298 K) 	(1)	Accept 101 kPa / 1.01 × Allow 1 bar pressure Do not award other temp	10 ⁵ Pa / 1 atmosphere pressure		
	 Copper half-cell: (M3) copper (electrode) dipping into solution 	(1)	Ignore references to ano	de/cathode		
	• (M4) 1 mol dm ⁻³ Cu ²⁺ (solution)	(1)		d copper(II) salt e.g. copper(II) sulfate / CuSO ₄ / O ₃) ₂ / copper(II) chloride / CuCl ₂		
	 Connections: (M5) salt bridge (dipping into /touching both solutions) and voltmeter 		e.g. potassium, sodium o	and labelled just with the electrolyte or ammonium nitrate, chloride or sulfate	<u>.</u>	
	and complete circuit	(1)		circuit is incorrect e.g. a cell or ammeter instead of ompounds such as KOH/HNO ₃ in salt bridge		
Quest Num	Ancur	er		Additional Guidance	Mark	
18(b) (i	(i) An explanation that makes reference	to the fol	lowing points:	Ignore any references to E_a /energy	(3)	

r				
	(concentrated hydrochloric acid) • increases the concentration of H^+ ions in the first equilibrium (and displaces it to the right) so increases the value of $E / E > 1.33$ (V)	(1)	 Allow just 'when [H⁺] increases the first equilibrium shifts to the right' Allow because the coefficient for H⁺ is 14, the position of equilibrium is very sensitive to the concentration of H⁺ 	
	 (concentrated hydrochloric acid) increases the concentration of chloride ions in the second equilibrium (and displaces it to the left) so decreases the value of <i>E</i> / <i>E</i> < 1.36 (V) 	(1)	Allow just 'when $[Cl^-]$ increases the second equilibrium shifts to the left' There must be some indication of the equilibrium referred to but can simply be $Cl_2:2 \ Cl^-$	
	• the difference between 1.33 and 1.36 is (very) small and so using concentrated hydrochloric acid, <i>E</i> _{cell} will be positive (so the reaction occurs)	(1)	Allow answer in terms of first E^{Θ} increasing (above 1.36 (V)) or second E^{Θ} decreasing (below 1.33(V)) so E_{cell} will be positive for M3 Allow chlorine escapes and displaces second equilibrium to the left and decreases E^{Θ} decreasing below 1.33 (V) so E_{cell} will be positive	
			Ignore references to anode/cathode COMMENT If neither H ⁺ nor Cl ⁻ are referred to but equilibrium shifts both stated correctly then award (1) for M1 and M2. If an overall equation is written and correct comments made then all marking points possible	

Question Number	Answer	Additional Guidance	Mark
18(b)(ii)		Example of cell diagram:	(2)

	(1)	$Pt(s) 2Cl^{-}(aq) Cl_{2}(g) [Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq)], [2Cr^{3+}(aq) + 7H_{2}O(l)] Pt(s) Cl_{2}(g) Cl_{2}(g$	
• left hand side of cell diagram		Allow comma between Cl^- and Cl_2	
		Do not award missing molar ratio but penalise once only COMMENT	
		Allow use of $Cl^{-}(aq) \mid \frac{1}{2}Cl_{2}(g)$ and $6Cl^{-}(aq) \mid 3Cl_{2}(g)$	
• central vertical lines and right		Allow dotted / dashed vertical lines in the cell junction of the cell diagram	
hand side of cell diagram	(1)	Allow comma between dichromate ion and proton	
Č		Allow vertical line between protons and chromium(III) ions	
		Ignore missing / incorrect state symbols	
		Ignore omission of water	
		Ignore missing brackets/use of rounded brackets	
		Penalise inclusion of electrons once only	
		If no other mark is awarded, allow (1) for whole cell diagram written in	
		reverse	
		If no other mark is awarded, allow (1) for electrodes on correct sides but 2Cl ⁻	
		and Cl_2 in reverse order and / or $2Cr^{3+}$ and $Cr_2O_7^{2-} + 14H^+$ in reverse order	
		Award (1) if Pt(s) missing both sides but all otherwise correct	
		•	

Question Number	Answer	Additional Guidance	Mark
18(c)		Example of calculation:	(3)
	• calculation of mol MnO_4^- and X_2O_5 (1)	$mol MnO_4^- = \frac{50.0 \times 0.02}{1000} = 0.001 / 1.00 \times 10^{-3}$	
		and	
		mol X ₂ O ₅ = $\frac{25.0 \times 0.1}{1000}$ = 0.0025 / 2.5 × 10 ⁻³	
		or mol X = $\underline{25.0 \times 0.1 \times 2}_{1000}$ = 0.0050 / 5 × 10 ⁻³	
		$\begin{array}{c} \text{COMMENT} \\ \text{A count was of functions} & 1 \\ \end{array} \text{ and } & 1 \\ \end{array}$	
		Accept use of fractions $\frac{1}{1000}$ and $\frac{1}{400}$ Allow M1 for these two values even if incorrectly labelled	
	• deduction of mol ratio (1)	mol ratio X : MnO_4^- is 5 : 1 Allow calculation of moles of electrons per Mn and per X giving 5×10^{-3} : 5×10^{-3}	
	• final oxidation number of X (1)	(there are 5 electrons in the MnO_4^- half-equation so X's oxidation number decreased by 1 to (+) 4	
		Allow X ⁺⁴	
		Allow TE of oxidation number (+) 3 from 5 : 2 ratio or from	
		$5 \times 10^{-3} \div 2.5 \times 10^{-3} = 2$ so $+5 - 2 = (+)3$	
		Award (3) for oxidation number (+) 4 provided some working such as number of moles for M1	

(Total for Question 18 = 13 marks)

Question Answer	Additional Guidance	Mark
-----------------	---------------------	------

19(a)			Example	(2)				
	• calculation of mol of K, Fe and O	(1)		K	Fe	0		
			mol	<u>39.5</u> = 1.01	28.2 = 0.505	32.3 = 2.02		
				39.1	55.8	16		
	deduction of mol ratio		ratio	2	1	4		
	and	(1)	г	10 1 77				
	empirical formula	(1)	-	al formula is K ₂ I symbols in any o				
			Accepts	symbols in any o	iuei			
			Allow us	se of 39 as A_r of	K, 56 as A_r of Fe	and 0.504 as		
			mol of F)			
					andidates own mo			
			Correct of	empirical formul	la with no working	g scores (2)		
			COMMENT Use of atomic numbers gives the correct empirical					
			formula and so please check the working before awarding (2) if the answer is correct. If atomic numbers					
			have bee					
			If one or					
	Alternative method		appropri					
	• calculation of $M_{\rm r}$ value	(1)	$M = (\Delta t)$	omic mass – ele	ement percentage)	v 100		
	• calculation of <i>M</i> _r value	(-)			x 100 = 197.87 / 1			
				()				
	• deduction of elemental values			5 ÷ 100) x 198 ÷				
		Fe = $(28.2 \div 100)$ x 198 = 55.8 so 1Fe						
	and			3 ÷ 100) x 198				
	empirical formula	(1)	Empirica	al formula is K ₂ I	FeO ₄			

19(b)(i)	An answer that makes reference to the following point:		(1)
	• reaction between two negative ions is slow due to repulsion	Allow negative species for negative ions Allow just 'the negative ions repel' Ignore references to unlikelihood of three negative ions colliding Do not award negative molecules	

Question Number	Answer	Additional Guidance	Mark
19(b)(ii)	• ionic equation involving iron(II) (1)	$\frac{\text{Examples of ionic equations}}{2\text{Fe}^{2^+} + \text{S}_2\text{O}_8^{2^-}} \rightarrow 2\text{Fe}^{3^+} + 2\text{SO}_4^{2^-}$	(2)
	• ionic equation involving iron(III) (1)	$2Fe^{3+} + 2I^- \rightarrow 2Fe^{2+} + I_2$	
		Award (1) for balanced equations given in reverse order	
		Allow (1) for two unbalanced equations with all species paired correctly Ignore state symbols even if incorrect	

Question	Answer	Additional Guidance	Mark
----------	--------	---------------------	------

Number				
19(c)(i)	An explanation that makes reference to the following points:			(2)
	• because it forms one dative (covalent) / co-ordinate bond (to Fe ²⁺)	(1)	Allow 'a dative/co-ordinate bond'	
	• using a lone pair (of electrons) on oxygen	(1)	Allow oxygen donates a pair of electrons	
			Ignore water uses a lone pair of electrons	
			COMMENT	
			Allow M2 for a diagram showing the oxygen lone pair forming the co-ordinate bond but annotation needed to score M1	

Question Number	Additional Guidance	Mark
--------------------	---------------------	------

19(c)(ii)	19(c)(ii) An explanation that makes reference to the following points:				
	• octahedral because there are six pairs of electrons	(1)	Allow this shown on a diagram Allow octahedral because there are 6 coordinate bonds/coordination number is 6 Ignore just octahedral because there are 6 ligands		
			Do not award if bond angle other than 90° / 90° and 180° stated		
	• which are as far apart as possible to minimise repulsion	(1)	Allow repel/arrange/shape to maximum separation		
			Do not allow repulsion between atoms or water molecules or ligands		

Question Answer	Additional Guidance	Mark
-----------------	---------------------	------

19(d)	An explanation that makes reference to the following points:			(2)
	 carbon monoxide replaces / takes the place of the oxygen molecule / ligand 	(1)	Accept ligand substitution / exchange reaction between oxygen and carbon monoxide COMMENT The question refers to oxygen being carried around and so there needs to be explicit reference and not just implied that to it being replaced/substituted or its place being taken	
	 (and it may be toxic) because it binds strongly to the Fe²⁺ ion 	(1)	 Allow carbon monoxide forms a stronger bond to Fe²⁺ (than oxygen) Allow carbon monoxide binds (almost) irreversible / permanently to Fe²⁺ Allow carbon monoxide forms a more stable complex ion with Fe²⁺ / the complex formed has a larger equilibrium constant Allow prevents / reduces the amount of oxygen being carried to the cells / organs / around the body / blood – scores M2 not M1 Allow just carbon monoxide binds more strongly to haemoglobin/globin 	

Question Number	Answer		Additional Guidance	Mark
19(e)	An explanation that makes reference to the following points:			(2)
	 there are more particles / moles on the right (of the equation or there is an increase from 3 particles / moles / species on 		Allow species for particles Do not award reference to molecules / atoms /compounds	
	the left of the equation to 5 on the right	(1)	Do not award incorrect numbers	
	• so ΔS_{system} increases / is positive (and the reaction is thermodynamically feasible)	(1)	Allow ΔS_{total} is positive / increasing (and the reaction is thermodynamically feasible)	
			Allow there is an increase in entropy (and the reaction is thermodynamically feasible)	
			Ignore references to increases in disorder	
			COMMENT Entropy is the subject of the question and so answers which refer to "it increases" can score M2 But Ignore just 'entropy is positive' since it is always positive	

Question Number	Answer	Additional Guidance	Mark
--------------------	--------	---------------------	------

19(f)			Example of calculation	(5)
	 (M1) calculation of concentration of Cr₂O₇²⁻ in mol dm⁻³ Process (division by 216) 	(1)	Conc $\operatorname{Cr}_2\operatorname{O7}^{2-} = \underline{2.56}_{216} = 0.011852 / 1.1852 \times 10^{-2} \pmod{\operatorname{dm}^{-3}}$	
	 (M2) calculation of mol Cr₂O₇²⁻ in 22.55 cm³ Process (multiplying by 0.02255) 	(1)	Mol $\operatorname{Cr}_2\operatorname{O7}^{2-} = \underline{0.011852 \times 22.55}_{1000}$ = 0.00026726 /2.6726 × 10 ⁻⁴ (mol)	
	• (M3) calculation of mol Fe ²⁺ in 25.0 cm ³ Process (molar ratio x6)	(1)	Mol Fe ²⁺ = $0.00026726 \times 6 = 0.0016036 / 1.6036 \times 10^{-3}$ (mol)	
	• (M4) calculation of mass of Fe ²⁺ in 1 dm ³ Process (x55.8 and scaling up x40)	(1)	Mass $Fe^{2+} = 0.0016036 \times 1000 \times 55.8 = 3.5791$ (g) 25.0 Allow 3.5921 (g) using 56 as A_r for Fe	
	• (M5) calculation of percentage of Fe ³⁺ Process (subtraction to get Fe ³⁺ mass and then % calculation)	(1)	Mass $Fe^{3+} = 6.28 - 3.5791 = 2.7009$ (g) and % of $Fe^{3+} = 2.7009 \times 100 = 43.007 / 43.0$ (%) 6.28 Allow 42.8% using 56 as A_r for Fe Allow TE at each stage Ignore SF except 1 SF Do not award M5 if %>100 Correct answer with some working scores (5) COMMENT 56.8% / 57% scores (4) as missing subtraction in M5 98.6% scores (4) as missing scaling up in M4 90.5% scores (4) as missing molar ratio in M3 See second page for alternative method	
	Alternative method	(1)	Example of calculation Mass $(Cr_2O_7^{2-}) = 2.56 \times 22.55 = 0.057728$ (g)	
	• (M1) mass of $Cr_2O_7^{2-}$ in 22.55 cm ³	(1)	$\frac{1}{10000000000000000000000000000000000$	

	Process (multiplying by 0.02255)		1000
•	(M2) calculation of mol $Cr_2O_7^{2-}$ in 22.55 cm ³ Process (division by 216)	(1)	Mol (Cr ₂ O ₇ ²⁻) = $0.057728 = 0.00026726 / 2.6726 \times 10^{-4}$ (mol) 216
•	(M3)calculation of mol Fe^{2+} in 25.0 cm ³ Process (molar ratio x6)	(1)	Mol Fe ²⁺ = $0.00026726 \times 6 = 0.0016036 / 1.6036 \times 10^{-3}$ (mol)
•	(M4) calculation of mass of Fe^{2+} in 25.0 cm ³ and calculation of total mass of ($Fe^{2+} + Fe^{3+}$) Process (x55.8 and scaling to get total mass by x 0.025)	(1)	Mass $Fe^{2+} = 0.0016036 \times 55.8 = 0.089481$ (g) and Mass $(Fe^{2+} + Fe^{3+}) = \frac{6.28 \times 25.0}{1000} = 0.157$ (g)
•	(M5) calculation of percentage of Fe^{3+} Process (subtraction to get Fe^{3+} mass and then % calculation)	(1)	Mass $Fe^{3+} = 0.157 - 0.089481 = 0.067519$ (g) and % of $Fe^{3+} = 0.067519 \times 100$ = 43.0/43 (%) 0.157
			COMMENT There are variations of this approach. If the final answer is correct then award (5). If not then count the errors and deduct one mark for each error. Do allow TE at each stage by looking at the processes employed by the candidate.

(Total for Question 19 = 18 marks)

Question Number	Answer		Additional Guidance	Mark
20(a)(i)			See examples of mechanism on next page	(4)
	• equation for the formation of the electrophile	(1)	FeBr ₃ + Br ₂ \rightarrow Br ⁺ + FeBr ₄ ⁻ / Br-Br + FeBr ₃ \rightarrow Br ^{δ+} -Br ^{δ-} FeBr ₃ Allow this shown as part of the first step e.g. Allow partial charges on Br ^{δ+} -Br ^{δ-} COMMENT	
			Allow the use of AlBr ₃ /AlCl ₃	
	 curly arrow within the circle/hexagon to anywhere towards or on Br⁺ 	(1)	Do not award curly arrow starting on or outside the hexagon Do not award missing $+/\delta^+$ on electrophile Do not award curly arrow to a lone pair of electrons on Br ⁺	
	 intermediate structure including charge with horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon atom and some part of the positive charge must be within the horseshoe 	(1)	Do not award dotted bonds to H and Br unless they are part of a 3D structure	
	• curly arrow from C–H bond to anywhere in the hexagon, reforming the delocalised structure	(1)	Ignore missing H^+ / involvement of FeBr ₄ ⁻ in removal of H^+ Ignore reformation of the catalyst even if incorrect	

Question Number	Accept	able Answe	ers		Additional Guidance	Mark
20(a)(ii)*	This question assesses a student's structured answer with linkages as Marks are awarded for indicative structured and shows lines of reas The following table shows how th content.	nd fully-sustai content and fo oning.	ned reasoning. r how the answer is		Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)
	Number of indicative marking points seen in answer 6 5-4 3-2 1 0 The following table shows how the and lines of reasoning.	indicative m	harks awarded for arking points 4 3 2 1 0 d be awarded for st	ructure	In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would score zero marks for reasoning. General points to note If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s).	
	Answer shows a coherent and lo structure with linkages and fully lines of reasoning demonstrated	sustained	Number of marks awarded for struct answer and sustail line of reasoning 2	ture of	Accept structures for names throughout	
	Answer is partially structured with some 1 linkages and lines of reasoning. 1 Answer has no linkages between points and 0 is unstructured. 1		If name and formula given both must be correct Deduct a reasoning mark if there is no comparison given for IP1 to IP3			
	Comment: Look for the indicative marking points first, then consider the mark for structure of answer and sustained line of reasoning			for	Do not penalise unbalanced / incomplete equations Deduct (mark) from reasoning if any products given are incorrect	
	Indicative content • IP1 – Similarity					

Question Number		Answer	Additional Guidance	Mark
		makes it more susceptible to electrophilic attack	and increases the electron density of the (benzene) ring/overlaps with the delocalised ring	
	•	IP6 – Phenol Phenol has a lone pair of electrons on the oxygen which is delocalised (within the ring) and	Allow the lone pair (of electrons) on the oxygen/OH in phenol	
		Cyclohexene has localised electron density in one π bond (which increases the electron density and makes it more susceptible to electrophilic attack)	If neither IP4 or IP5 awarded then allow (1) for benzene has delocalised electrons but cyclohexene does not	
	•	IP5 – Cyclohexene	stable Allow delocalisation of electrons in π bonds which decreases the electron density (of the ring) and makes it less susceptible to electrophilic attack	
	•	IP4 – Benzene Benzene has delocalised electrons and is (kinetically) stable so the reaction has a high activation energy	other equation(s) do not Ignore references to specific temperatures Allow delocalised (π) electron ring in benzene is (very)	
		without a catalyst and benzene needs (a Friedel-Crafts catalyst / iron / iron(III) bromide)	Allow react under normal laboratory conditions / room temperature and pressure Allow reference to AlBr ₃ /AlCl ₃ This IP can be awarded if benzene equation has catalyst and other equation (c) do not	
	•	IP3 – Conditions Cyclohexene and/or phenol react with (aqueous) bromine /	dibromocyclohexane and phenol forms tribromo product / 2, 4, 6-tribromophenol Allow HBr is produced with benzene and phenol but cyclohexene only forms one product	
	•	IP2 – Types of reaction Cyclohexene undergoes addition reactions but benzene and/or phenol undergo substitution reactions	phenol reacting with an electrophile may be seen in IP6 Accept benzene forms monobromo product / bromobenzene, cyclohexene forms dibromo product / 1,2-	
		All are attacked by / react with electrophiles	All three need to be mentioned for this IP – evidence for	

20(b)	An answer that makes reference to the following points:		Allow displayed / structural / skeletal formulae or any combination of these	(7)
			Ignore any references to heat/ incorrect inorganic produ	cts
	• (M1) reagent for step 1 - magnesium and (dry) ether (reacting with bromobenzene)	(1)	Examples of structures of intermediates:	
	• (M2) first intermediate – phenyl magnesium bromide	(1)	Br Mg	
	 (M3) reagent for step 2 – phenyl magnesium bromide with carbon dioxide / CO₂ and (followed by hydrolysis with) dilute acid / H⁺ 		Allow (1) for M3 for the acid hydrolysis of benzonitrile	
	or methanal and dilute acid / H ⁺ then oxidation	(1)	Сон	
	• (M4) second intermediate – benzoic acid	(1)		
	 (M5) reagent for step 3 – phosphorus(V) chloride / PCl₅ 	(1)	Allow thionyl chloride/SOCl ₂	
	• (M6) third intermediate – benzoyl chloride	(1)	C	
	•(M7) reagent for step 4 – ammonia / NH ₃ added to an acyl chloride	(1)	Do not award dilute ammonia or ammonia added to benzoic acid	
	COMMENT Allow the use of ammonia with benzoic acid if there is clear evidence of the ammonium salt being dehydrated. M5 to M7 can then be awarded, otherwise the do not award applies		M4 to M7 from scheme above can be awarded from benzoic acid however produced	
Question Number	Answer		Additional Guidance	Mark
20(c)(i)			cept skeletal/displayed/structural formulae or nbination thereof provided it is correct	(1)

• repeat unit	Example of repeat unit:
	$-\underbrace{N-(CH_2)_6}_{H} \underbrace{N-C}_{H} \underbrace{O}_{C}_{H} \underbrace{O}_{C}_{H}$ Accept switching of monomer positions, e.g. $-\underbrace{O}_{H} \underbrace{O}_{C} \underbrace{O}_{H} \underbrace{O}_{C}_{H} \underbrace{O}_{H} $
	Allow amide link to be drawn as CONH/ – NH – CO – Allow 'cis' orientation of amide link
	Ignore bond lengths and bond angles Ignore brackets around repeat unit and n Ignore byproducts such as HCl
	Do not award additional incomplete repeat units
	Do not award hydrogen drawn with two single bonds, e.g. $-N - H - CO$ Do not award missing continuation/extension bonds
	COMMENT Allow two repeat units provided both are correct

Question Number	Answer	Additional Guidance	Mark
--------------------	--------	---------------------	------

20(c)(ii)	An answer that makes reference to the following point:		Reference to breaking of covalent bonds scores (0) Ignore references to (permanent) dipole forces	(2)
	• because there is hydrogen bonding (and London forces between the chains) in a polyamide	(1)	Allow 'it' for the polyamide since it is the subject of the question, so "it has hydrogen bonding" scores M1	
			Do not award if hydrogen bonding to water stated Do not award if hydrogen bonding shown by CH ₂ Do not award if ionic bonding or ions referred to	
	• (and this is) stronger than the London forces between the chains in polyalkenes (so more energy is needed to separate the polyamide molecules)		Accept dispersion forces / attractions between temporary and induced dipoles for London forces Allow van der Waals' forces for London forces	
	or the London forces between the chains in polyalkenes are weaker (than hydrogen bonding so more energy is	(1)	Allow London forces in polyalkenes are easier to overcome (than hydrogen bonding)	
	needed to separate the polyamide molecules)	(1)	Note that M2 is awarded for a comparison of the weakness of London forces to the strength of hydrogen bonding. Hence M2 is dependent on M1 or near-miss	
			COMMENT Reference to polyalkenes "only having London forces" compared to polyamides having hydrogen bonding is not enough for M2 unless the hydrogen bonding is stated to be strong	
			Allow reference to molecules rather than chains	

(Total for Question 20 = 20 marks) (Total for Section B = 51 marks)

Section C

Question Number	Answer	Additional Guidance	Mark
21(a)	2-hydroxybenzoic acid	Accept 2-hydroxybenzenecarboxylic acid	(1)
		Allow minor misspellings such as 2-hydroxylbenzenoic acid	
		Ignore missing hyphen or comma instead of hyphen	
		COMMENT Allow 2-hydroxybenzonic acid	

Question Number	Answer	Additional Guidance			
21(b)(i)	• carboxylic acid and ester and benzene / arene	Accept names given in any order	(1)		
		Allow just 'carboxyl' for carboxylic acid Allow just 'carboxylic'			
		Allow phen y l for benzene/arene Allow aromatic ring for benzene/arene			
		Ignore formulae of groups			
		Do not award phenol Do not award carbo n yl			

Question Number	Answer	Additional Guidance	Mark
21(b)(ii)		Example of equation:	(1)
	• correct equation	COOH + (CH ₃ CO) ₂ O + CH ₃ COOH + CH ₃ COOH + CH ₃ COOH	
		Accept displayed / skeletal formulae COMMENT Allow use of C ₆ H ₄ for the benzene ring	
		Do not award molecular formulae	

Question Number	Answer		Additional Guidance	Mark
21(b)(iii)	• calculation of amount of salicylic acid	(1)	Example of calculation: mol salicylic acid used = $\frac{2.00}{138}$ = 0.014493 (mol)	(3)
	• calculation of theoretical mass of acetyl salicylic acid	(1)	theoretical mass of acetyl salicylic acid = 0.014493×180 = 2.6087 (g) TE on M1	
	• calculation of actual mass of acetyl salicylic acid	(1)	actual mass of acetyl salicylic acid = $\frac{2.6087 \times 74.8}{100}$ = 1.9513 (g) TE on M2 provided answer ≤ 5.00 (g)	
			OR mass salicylic acid converted = $2.00 \times 0.748 = 1.496$ (g) (1) mol salicylic acid converted = $\frac{1.496}{138} = 0.01084$ (mol) (1) mass acetyl salicylic acid formed = 0.01084×180 = 1.9513 (g)	
			Ignore SF except 1 SF	
			Correct answer scores (3)	
			COMMENT If M_r values are reversed 1.1469 g scores (2) Allow fractions e.g. salicylic acid moles $=\frac{1}{69}$	

Question Number	Answer	Additional Guidance	Mark
21(c)(i)		Example of equation:	(1)
	• completed equation	$\begin{array}{c} \\ & \\ & \bigcirc\\ & $	

Question Number	Answer		Additional Guidance	Mark
21(c)(ii)	An explanation that makes reference to the following points:		Penalise reference to change in K_a once only	(3)
	 acetylsalicylic acid will dissociate less ir or 	n acidic solution	Allow reference to the stomach for 'acidic solution'	
	acetylsalicylic acid dissociate more in al	kaline solution (1)	Allow reference to small intestine for 'alkaline' If both stated then both must be correct	
	• because the additional H ⁺ / H ₃ O ⁺ ions in shift the equilibrium position to the left	the acid will (1)	Allow the backward reaction is favoured by the additional/higher H^+ / H_3O^+ ions in the acid	
	• and OH ⁻ / hydroxide ions in the alkali w H ⁺ ions and shift the equilibrium position		Accept $H^+ + OH^- \rightarrow H_2O$ and this shifts the equilibrium position to the right	
			Allow $-COOH + OH^- \rightarrow -COO^- + H_2O$ Or carboxylic acid group reacts with /neutralises the OH ⁻ and this shifts the equilibrium position to the right/ favours the forward reaction	
Ouestie				
Question Number	Answer		Additional Guidance	Mark

21(d)	• methanol / CH ₃ OH	Allow displayed formula / combination of structural and displayed formula	(1)
		If name and formula are given then both must be correct Allow methyl alcohol	
		Ignore reference to acid catalyst/ H ₂ SO ₄ / HCl/ heat	
		Do not award methan a l	
		Do not award CH ₄ O	

Question Number	Answer			Ad	ditional Gu	ıidance		Mark
21(e)			Example of	table:		I		(2)
	• chemical shift ranges for OH and CH ₃ in			Acetylsal	icylic acid	Methyl s	salicylate	
	acetylsalicylic acid	(1)	Type of proton	OH	CH ₃	OH	CH ₃	
	• chemical shift ranges for OH and CH ₃ in methyl salicylate	(1)	Chemical shift / ppm	10.0 – 12.0	1.6 - 2.8	3.8 - 7.6	2.8-4.3	
			Allow range Allow any r				.2	
			COMMEN If no other r ranges If no other r values within acceptable r	nark is awa nark award in the corre	ed, allow (1) for any th		

Answer		Additional Guidance	Mark
• (M1) calculation of mol NaOH added at start	(1)	Example of calculation: mol NaOH = $\frac{25.0 \times 1.00}{1000}$ = 0.025 / 2.5 × 10 ⁻² (mol)	(6)
• (M2) calculation of mol HCl used in titration	(1)	mol HCl = $\frac{16.95 \times 0.100}{1000}$ = 0.001695 / 1.695 × 10 ⁻³ (mol)	
 (M3) calculation of mol NaOH remaining in 250 cm³ Process (scaling up of remaining NaOH x10) 	(1)	(mol NaOH remaining in 25.0 cm ³ = $0.001695 / 1.695 \times 10^{-3}$ (mol)) mol NaOH remaining in 250 cm ³ = $0.01695 / 1.695 \times 10^{-2}$ (mol)	
 (M4) calculation of mol acetylsalicylic acid reacted Process (subtraction and then ÷ by2) 	(1)	mol NaOH = $0.025 - 0.01695 = 0.00805 / 8.05 \times 10^{-3}$ (mol) mol acetylsalicylic acid = $0.00805 = 0.004025$ 2	
• (M5) calculation of acetylsalicylic acid mass Process (x180)	(1)	mass acetylsalicylic acid = $0.004025 \times 180 = 0.7245$ (g)	
 (M6) calculation of percentage of acetylsalicylic acid and 		percentage of acetylsalicylic acid = $\frac{0.7245 \times 100}{0.760}$ = 95.329 (%)	
deduction of Brand of tablet Process (% calc and brand identity)	(1)	and Brand B	
		Allow TE at each stage Brand / percentage with no working scores (0)	
		ignore incorrect intermediate units	
		Do not credit a division of moles by 2 if carried out before the	
percentage calculation		subtraction	
	 (M1) calculation of mol NaOH added at start (M2) calculation of mol HCl used in titration (M3) calculation of mol NaOH remaining in 250 cm³ Process (scaling up of remaining NaOH x10) (M4) calculation of mol acetylsalicylic acid reacted Process (subtraction and then ÷ by2) (M5) calculation of acetylsalicylic acid mass Process (x180) (M6) calculation of percentage of acetylsalicylic acid and deduction of Brand of tablet Process (% calc and brand identity) COMMENT An answer of 95% and brand B does not automatically score (6) because 95% can be obtained incorrectly. Check that 0.76 is the denominator for the 	 (M1) calculation of mol NaOH added at start (M2) calculation of mol HCl used in titration (M3) calculation of mol NaOH remaining in 250 cm³ (I) Process (scaling up of remaining NaOH x10) (M4) calculation of mol acetylsalicylic acid reacted process (subtraction and then ÷ by2) (M5) calculation of acetylsalicylic acid mass Process (x180) (M6) calculation of percentage of acetylsalicylic acid and deduction of Brand of tablet Process (% calc and brand identity) COMMENT An answer of 95% and brand B does not automatically score (6) because 95% can be obtained incorrectly. Check that 0.76 is the denominator for the 	• (M1) calculation of mol NaOH added at start(1)Example of calculation: mol NaOH = 25.0×1.00 1000 = $0.025 / 2.5 \times 10^{-2}$ (mol)• (M2) calculation of mol HCl used in titration(1)mol HCl = 16.95×0.100 1000 = $0.001695 / 1.695 \times 10^{-3}$ (mol)• (M3) calculation of mol NaOH remaining in 250 cm³ NaOH x10)(1)mol NaOH remaining in 25.0 cm³ = $0.001695 / 1.695 \times 10^{-3}$ (mol))• (M4) calculation of mol acetylsalicylic acid reacted Process (subtraction and then \div by2)(1)mol NaOH remaining in 25.0 cm³ = $0.001695 / 1.695 \times 10^{-3}$ (mol))• (M5) calculation of acetylsalicylic acid and deduction of Brand of tablet Process (% calc and brand identity)(1)mass acetylsalicylic acid = $0.004025 \times 180 = 0.7245$ (g)• (M6) calculation of Brand of tablet Process (% calc and brand identity)(1)mass acetylsalicylic acid = 0.7245×100 and Brand B• (DMHENT An answer of 95% and brand B does not automatically score (6) because 95% can be obtained incorrectly. Check that 0.76 is the denominator for the(1)• (M5) calculation of formation for theDo not credit a division of moles by 2 if carried out before the

(Total for Question 21 = 19 marks) (Total for Section C = 19 marks) (Total for Paper = 90 marks)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom