Pearson
 Edexcel

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level In Chemistry (WCH15)
Paper 01 Unit 5: Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2023
Question Paper Log Number: P72995A
Publications Code: WCH15_01_MS_2310
All the material in this publication is copyright.
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Mark
$\mathbf{1}$	The only correct answer is D (zinc)	(1)
	$\boldsymbol{A} \quad$ is incorrect because cobalt forms a stable Co^{2+} ion with incompletely-filled d-orbitals	
	$\boldsymbol{B} \quad$ is incorrect because copper forms a stable Cu^{2+} ion with incompletely-filled d-orbitals	
	$\boldsymbol{C} \quad$ is incorrect because nickel forms a stable Ni^{2+} ion with incompletely-filled d-orbitals	

Question number	Answer	Mark
$\mathbf{2}$	The only correct answer is $\mathbf{D}\left(\mathrm{VO}_{3}{ }^{-}\right.$and $\left.\mathrm{VO}_{2}{ }^{+}\right)$	(1)
	$\boldsymbol{A} \quad$ is incorrect because chromium has oxidation numbers +6 and +3 respectively	
	$\boldsymbol{B} \quad$ is incorrect because copper has oxidation numbers +1 and +2 respectively	
$\boldsymbol{C} \quad$ is incorrect because manganese has oxidation numbers +3 and +4 respectively		

Question number	Answer	Mark
$\mathbf{3}$	The only correct answer is D (6)	(1)
	$\boldsymbol{A} \quad$ is incorrect because although there are two different ligands, there are 6 atoms bonded to the central ion	
	$\boldsymbol{B} \quad$ is incorrect because the charge on Cr is 3+ but there are 6 atoms bonded to the central ion	
$\boldsymbol{C} \quad$ is incorrect because although there are 4 ligands, there are 6 atoms bonded to the central ion		

Question number	Answer	Mark
$\mathbf{4}$	The only correct answer is $\mathbf{C}\left(\mathrm{Ni}^{2+}\right)$	(1)
	$\boldsymbol{A} \quad$ is incorrect because Cu^{2+} gives a blue precipitate with aqueous sodium hydroxide and with aqueous ammonia	
	$\boldsymbol{B} \quad$ is incorrect because the precipitate formed with $\mathrm{Fe} e^{2+}$ and aqueous ammonia is insoluble in excess ammonia	
$\boldsymbol{D} \quad$ is incorrect because V^{2+} is a purple solution		

Question number	Answer	Mark
$\mathbf{5}$	The only correct answer is $\mathbf{B}\left(\left[\mathrm{Zn}_{\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}+2 \mathrm{NH}_{4}{ }^{+}\right)}\right.\right.$	(1)
	$\boldsymbol{A} \quad$ is incorrect because the precipitate should not have a positive charge and the charges do not balance	
$\boldsymbol{C} \quad$ is incorrect because $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ is formed when the precipitate dissolves in excess aqueous ammonia		
$\boldsymbol{D} \quad$ is incorrect because $\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ should have a $2+$ charge and the equation is not balanced		

Question number	Answer	Mark
$\mathbf{6}$	The only correct answer is $\mathbf{B}\left(\mathrm{Mn}^{2+}\right.$ acts as a catalyst; concentration of reactants decreases)	(1)
	$\boldsymbol{A} \quad$ is incorrect because the kinetic energies of the particles do not change	
$\boldsymbol{C} \quad$ is incorrect because MnO_{4}^{-}is not a catalyst and the kinetic energies of the particles do not change		
$\boldsymbol{D} \quad$ is incorrect because MnO_{4}^{-}is not a catalyst		

Question number	Answer	Mark

7	The only correct answer is $\mathbf{C}\left(\Delta S_{\text {total }}\right.$ and $\left.\ln K\right)$ \boldsymbol{A} is incorrect because E^{θ} cell is not directly proportional to $\Delta_{\mathrm{r}} H$ B is incorrect because $E_{\text {cell }}^{\theta}$ is not directly proportional to $\Delta_{\mathrm{r}} H$ or to $\ln R T$ D is incorrect because E^{θ} cell is not directly proportional to $\ln R T$	(1)
Question number	Answer	Mark
8	The only correct answer is A (standard reduction potential; most negative to most positive) B is incorrect because the electrochemical series has the most negative standard electrode potential first C is incorrect because standard cell potentials are determined from two standard electrode potentials D is incorrect because standard cell potentials are determined from two standard electrode potentials and the electrochemical series has the most negative standard electrode potential first	(1)

Question number	Answer	Mark
$\mathbf{9}$	The only correct answer is $\mathbf{A}\left(\mathrm{H}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}\right)$	(1)
	$\boldsymbol{B} \quad$ is incorrect because H^{+}ions cannot be produced in an alkaline solution	
$\boldsymbol{C} \quad$ is incorrect because H^{+}ions cannot be produced in an alkaline solution		
$\boldsymbol{D} \quad$ is incorrect because H^{+}ions cannot be produced in an alkaline solution		

Question number	Answer	Mark
$\mathbf{1 0}$	The only correct answer is B (negative; positive)	(1)
	$\boldsymbol{A} \quad$ is incorrect because E^{θ} cell $=E_{\text {rhs }}-E_{\text {lhs }}$ so $0.17-(-0.40)=+0.57$ V or $0.40-(-0.17)=+0.57 \mathrm{~V}$	
	$\boldsymbol{C} \quad$ is incorrect because $E_{c e l l}^{\theta}=E_{\text {rhs }}-E_{\text {lhs }} \operatorname{so} 0.17-(-0.40)=+0.57$ Vor $0.40-(-0.17)=+0.57 \mathrm{~V}$	
$\boldsymbol{D} \quad$ is incorrect because $E_{\text {cell }}^{\theta}=E_{\text {rhs }}-E_{\text {lhs }} \operatorname{so} 0.17-(-0.40)=+0.57$ Vor $0.40-(-0.17)=+0.57 \mathrm{~V}$		

Question number	Answer	Mark
$\mathbf{1 1}$	The only correct answer is C (magnesium)	(1)
	$\boldsymbol{A} \quad$ is incorrect because $1.635 \div 65.4=0.025 \mathrm{~mol}$ of zinc produced which gives a relative atomic mass of 24.3 for G	
	$\boldsymbol{B} \quad$ is incorrect because $1.635 \div 65.4=0.025 \mathrm{~mol}$ of zinc produced which gives a relative atomic mass of 24.3 for G	
	$\boldsymbol{D} \quad$ is incorrect because $1.635 \div 65.4=0.025 \mathrm{~mol}$ of zinc produced which gives a relative atomic mass of 24.3 for G	

Question number	Answer	Mark
$\mathbf{1 2}$	The only correct answer is \mathbf{D} (phenylamine)	$\mathbf{(1)}$
	$\boldsymbol{A} \quad$ is incorrect because the lone pair of electrons on N in ammonia is not delocalised so can be donated more easily	
	$\boldsymbol{B} \quad$ is incorrect because the lone pair of electrons on N in butylamine is not delocalised so can be donated more easily	
	$\boldsymbol{C} \quad$ is incorrect because the lone pair of electrons on N in ethylamine is not delocalised so can be donated more easily	

Question number	Answer	Mark
$\mathbf{1 3}$	The only correct answer is B $\left(\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}^{-}\right)$	(1)
	$\boldsymbol{A} \quad$ is incorrect because this is the structure of the uncharged molecule	
	$\boldsymbol{C} \quad$ is incorrect because this structure would exist at pH less than 6.0	
$\boldsymbol{D} \quad$ is incorrect because this is the structure of the zwitterion		

Question number	Answer	Mark
$\mathbf{1 4}$	The only correct answer is $\mathbf{A}\left(\mathrm{CH}_{2}=\mathrm{CHCOOH}\right)$	(1)
	$\boldsymbol{B} \quad$ is incorrect because phenol does not react with ethanol	
$\boldsymbol{C} \quad$ is incorrect because 2-propen-1-ol does not react with sodium hydroxide or ethanol		
$\boldsymbol{D} \quad$ is incorrect because ethanoic acid does not react with hydrogen in the presence of a nickel catalyst		

Question number	Answer	Mark
$\mathbf{1 5 (a)}$	The only correct answer is A (further substitution by a nitro group occurs)	(1)
	$\boldsymbol{B} \quad$ is incorrect because nitrobenzene does not decompose at $80^{\circ} \mathrm{C}$	
	$\boldsymbol{C} \quad$ is incorrect because fuming sulfuric acid is needed for the substitution of $\mathrm{SO}_{3} H$	
$\boldsymbol{D} \quad$ is incorrect because nitric acid does not decompose at $80^{\circ} \mathrm{C}$		

Question number	Answer	Mark
$\mathbf{1 5 (b)}$	The only correct answer is C (Sn and concentrated $\mathrm{HCl}(\mathrm{aq})$ are added first, then $\mathrm{NaOH}(\mathrm{aq})$ is added at the end)	(1)
	$\boldsymbol{A} \quad$ is incorrect because the acid and alkali would react to form a salt if they are added together	
	$\boldsymbol{B} \quad$ is incorrect because the acid and alkali would react to form a salt if they are added together	
	$\boldsymbol{D} \quad$ is incorrect because dilute hydrochloric acid would not react quickly enough with the tin	

Question number		Mark	
$\mathbf{1 5 (c)}$	The only correct answer is \mathbf{B}	(1)	
	$\boldsymbol{A} \quad$ is incorrect because the chlorine is not bonded covalently to the nitrogen		
$\boldsymbol{C} \quad$ is incorrect because the chlorine is not bonded covalently to the nitrogen			

Question number	Answer	Mark
$\mathbf{1 5 (d)}$	The only correct answer is B (alkaline)	(1)
	$\boldsymbol{A} \quad$ is incorrect because a phenoxide ion is needed for the reaction and that is produced in alkaline solution	
	$\boldsymbol{C} \quad$ is incorrect because a phenoxide ion is needed for the reaction and that is produced in alkaline solution	
$\boldsymbol{D} \quad$ is incorrect because a phenoxide ion is needed for the reaction and that is produced in alkaline solution		

Question number	Answer	Mark
16	The only correct answer is $\mathbf{D}\left(8\left(\mathrm{~cm}^{3}\right)\right)$ $\boldsymbol{A} \quad$ is incorrect because $2 \mathrm{~cm}^{3}$ of methane reacts with $4 \mathrm{~cm}^{3}$ of oxygen \boldsymbol{B} is incorrect because $4 \mathrm{~cm}^{3}$ of methane would react with $4 \mathrm{~cm}^{3}$ of oxygen if they reacted in a 1:1 mole ratio $C \quad$ is incorrect because $6 \mathrm{~cm}^{3}$ would be the volume of argon if methane reacted with oxygen in a $1: 1$ mole ratio	(1)
Question number	Answer	Mark
17	The only correct answer is $\mathbf{A}(x$ is 30 and y is 40$)$ \boldsymbol{B} is incorrect because water is a liquid at room temperature C is incorrect because $10 \mathrm{~cm}^{3}$ of but-1-ene reacts with $60 \mathrm{~cm}^{3}$ of oxygen to form $40 \mathrm{~cm}^{3}$ of carbon dioxide so there is an initial decrease of $30 \mathrm{~cm}^{3}$ D is incorrect because $10 \mathrm{~cm}^{3}$ of but-1-ene reacts with $60 \mathrm{~cm}^{3}$ of oxygen to form $40 \mathrm{~cm}^{3}$ of carbon dioxide so there is an initial decrease of $30 \mathrm{~cm}^{3}$ and water is a liquid at room temperature	(1)

Section B

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 8 (b) (i i) ~}$		Example of cell diagram:	(2)

	- left hand side of cell diagram - central vertical lines and right hand side of cell diagram	$\mathrm{Pt}(\mathrm{~s})\left\|2 \mathrm{Cl}^{-}(\mathrm{aq})\right\| \mathrm{Cl}_{2}(\mathrm{~g}) \\|\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})\right],\left[2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right] \mid \mathrm{Pt}(\mathrm{~s})$ Allow comma between Cl^{-}and Cl_{2} Do not award missing molar ratio but penalise once only COMMENT Allow use of $\left.\mathrm{Cl}^{-}(\mathrm{aq})\right\|^{1 / 2} \mathrm{Cl}_{2}(\mathrm{~g})$ and $6 \mathrm{Cl}^{-}(\mathrm{aq}) \mid 3 \mathrm{Cl}_{2}(\mathrm{~g})$ Allow dotted / dashed vertical lines in the cell junction of the cell diagram Allow comma between dichromate ion and proton Allow vertical line between protons and chromium(III) ions Ignore missing / incorrect state symbols Ignore omission of water Ignore missing brackets/use of rounded brackets Penalise inclusion of electrons once only If no other mark is awarded, allow (1) for whole cell diagram written in reverse If no other mark is awarded, allow (1) for electrodes on correct sides but $2 \mathrm{Cl}^{-}$ and Cl_{2} in reverse order and / or $2 \mathrm{Cr}^{3+}$ and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}$in reverse order Award (1) if $\mathrm{Pt}(\mathrm{s})$ missing both sides but all otherwise correct	

Question Number	Answer		Additional Guidance	Mark
18(c)	- calculation of $\mathrm{mol} \mathrm{MnO}_{4}^{-}$and $\mathrm{X}_{2} \mathrm{O}_{5}$ - deduction of mol ratio - final oxidation number of X	(1) (1) (1)	Example of calculation: $\mathrm{mol} \mathrm{MnO}_{4}^{-}=\frac{50.0 \times 0.02}{1000}=0.001 / 1.00 \times 10^{-3}$ and $\mathrm{mol} \mathrm{X}_{2} \mathrm{O}_{5}=\frac{25.0 \times 0.1}{1000}=0.0025 / 2.5 \times 10^{-3}$ or $\mathrm{mol} \mathrm{X}=\frac{25.0 \times 0.1 \times 2}{1000}=0.0050 / 5 \times 10^{-3}$ COMMENT Accept use of fractions $\frac{1}{1000}$ and $\frac{1}{400}$ Allow M1 for these two values even if incorrectly labelled mol ratio $\mathrm{X}: \mathrm{MnO}_{4}^{-}$is $5: 1$ Allow calculation of moles of electrons per Mn and per X giving $5 \times 10^{-3}: 5 \times 10^{-3}$ (there are 5 electrons in the MnO_{4}^{-}half-equation so X 's oxidation number decreased by 1 to (+) 4 Allow X^{+4} Allow TE of oxidation number (+) 3 from 5:2 ratio or from $5 \times 10^{-3} \div 2.5 \times 10^{-3}=2 \text { so }+5-2=(+) 3$ Award (3) for oxidation number (+) 4 provided some working such as number of moles for M1	(3)

(Total for Question 18 = 13 marks)

| Question | Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| Number | Mark | |

| Question
 Number | Answer | Additional Guidance |
| :---: | :---: | :---: | :---: |

19(b)(i)	An answer that makes reference to the following point: reaction between two negative ions is slow due to repulsion	Allow negative species for negative ions Allow just 'the negative ions repel' Ignore references to unlikelihood of three negative ions colliding Do not award negative molecules	(1)

Question Number	Answer	Additional Guidance	Mark
19(b)(ii)	- ionic equation involving iron(II) - ionic equation involving iron(III) - in	$\begin{aligned} & \frac{\text { Examples of ionic equations }}{2 \mathrm{Fe}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{SO}_{4}{ }^{2-}} \\ & 2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2} \end{aligned}$ Award (1) for balanced equations given in reverse order Allow (1) for two unbalanced equations with all species paired correctly Ignore state symbols even if incorrect	(2)

Question	Answer	Additional Guidance	Mark

Number				
$\mathbf{1 9 (c) (i)}$	An explanation that makes reference to the following points:		(2)	
	- because it forms one dative (covalent) / co-ordinate bond (to Fe^{2+})	(1)	Allow 'a dative/co-ordinate bond'	
	- using a lone pair (of electrons) on oxygen	(1)	Allow oxygen donates a pair of electrons Ignore water uses a lone pair of electrons COMMENT	Allow M2 for a diagram showing the oxygen lone pair forming the co-ordinate bond but annotation needed to score M1

Question Number	Answer	Additional Guidance	Mark

| 19(c)(ii) | An explanation that makes reference to the following
 points:
 - octahedral because there are six pairs of electrons | (1) | Allow this shown on a diagram
 Allow octahedral because there are 6 coordinate
 bonds/coordination number is 6
 Ignore just octahedral because there are 6 ligands
 Do not award if bond angle other than $90^{\circ} /$
 90° and 180° stated |
| :--- | :--- | :--- | :--- | :--- |
| - which are as far apart as possible to minimise repulsion | (1) | Allow repel/arrange/shape to maximum separation
 Do not allow repulsion between atoms or water
 molecules or ligands | |

| Question
 Number | Answer | Additional Guidance |
| :--- | :---: | :---: | :---: |

19(d)	An explanation that makes reference to the following points: - carbon monoxide replaces / takes the place of the oxygen molecule / ligand - (and it may be toxic) because it binds strongly to the Fe^{2+} ion	Accept ligand substitution / exchange reaction between oxygen and carbon monoxide COMMENT The question refers to oxygen being carried around and so there needs to be explicit reference and not just implied that to it being replaced/substituted or its place being taken Allow carbon monoxide forms a stronger bond to Fe^{2+} (than oxygen) Allow carbon monoxide binds (almost) irreversible / permanently to Fe^{2+} Allow carbon monoxide forms a more stable complex ion with Fe^{2+} / the complex formed has a larger equilibrium constant Allow prevents / reduces the amount of oxygen being carried to the cells / organs / around the body / blood - scores M2 not M1 Allow just carbon monoxide binds more strongly to haemoglobin/globin	(2)

Question Number	Answer	Additional Guidance	Mark
19(e)	An explanation that makes reference to the following points: - there are more particles / moles on the right (of the equation or there is an increase from 3 particles / moles / species on the left of the equation to 5 on the right - so $\Delta S_{\text {system }}$ increases / is positive (and the reaction is thermodynamically feasible)	Allow species for particles Do not award reference to molecules / atoms /compounds Do not award incorrect numbers Allow $\Delta S_{\text {total }}$ is positive / increasing (and the reaction is thermodynamically feasible) Allow there is an increase in entropy (and the reaction is thermodynamically feasible) Ignore references to increases in disorder COMMENT Entropy is the subject of the question and so answers which refer to "it increases" can score M2 But Ignore just 'entropy is positive' since it is always positive	(2)

(Total for Question 19 = 18 marks)

Question Number	Answer	Additional Guidance	Mark
20(a)(i)	- equation for the formation of the electrophile - curly arrow within the circle/hexagon to anywhere towards or on Br^{+} - intermediate structure including charge with horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon atom and some part of the positive charge must be within the horseshoe - curly arrow from $\mathrm{C}-\mathrm{H}$ bond to anywhere in the hexagon, reforming the delocalised structure	See examples of mechanism on next page $\mathrm{FeBr}_{3}+\mathrm{Br}_{2} \rightarrow \mathrm{Br}^{+}+\mathrm{FeBr}_{4}^{-} /$ $\mathrm{Br}-\mathrm{Br}+\mathrm{FeBr}_{3} \rightarrow \mathrm{Br}^{8+}-\mathrm{Br}^{8-}---\mathrm{FeBr}_{3}$ Allow this shown as part of the first step e.g. Allow partial charges on $\mathrm{Br}^{0+}-\mathrm{Br}^{\mathrm{o}^{-}}$ COMMENT Allow the use of $\mathrm{AlBr}_{3} / \mathrm{AlCl}_{3}$ Do not award curly arrow starting on or outside the hexagon Do not award missing $+/ \delta^{+}$on electrophile Do not award curly arrow to a lone pair of electrons on Br^{+} Do not award dotted bonds to H and Br unless they are part of a 3D structure Ignore missing H^{+}/ involvement of $\mathrm{FeBr}_{4}{ }^{-}$in removal of H^{+} Ignore reformation of the catalyst even if incorrect	(4)

Or

Question Number	Acceptable Answers	Additional Guidance	Mark
20(a)(ii)*	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content. The following table shows how the marks should be awarded for structure and lines of reasoning. Comment: Look for the indicative marking points first, then consider the mark for structure of answer and sustained line of reasoning Indicative content - IP1 - Similarity	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0,1 or 2 indicative points would score zero marks for reasoning. General points to note If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s). Accept structures for names throughout If name and formula given both must be correct Deduct a reasoning mark if there is no comparison given for IP1 to IP3 Do not penalise unbalanced / incomplete equations Deduct (mark) from reasoning if any products given are incorrect	(6)

All are attacked by / react with electrophiles

- IP2 - Types of reaction

Cyclohexene undergoes addition reactions but benzene and/or phenol undergo substitution reactions

- IP3-Conditions

Cyclohexene and/or phenol react with (aqueous) bromine / without a catalyst and benzene needs
(a Friedel-Crafts catalyst / iron / iron(III) bromide)

- IP4-Benzene

Benzene has delocalised electrons and is (kinetically) stable so the reaction has a high activation energy

- IP5-Cyclohexene

Cyclohexene has localised electron density in one π bond (which increases the electron density and makes it more susceptible to electrophilic attack)

- IP6 - Phenol

Phenol has a lone pair of electrons on the oxygen which is delocalised (within the ring)
and
makes it more susceptible to electrophilic attack

All three need to be mentioned for this IP - evidence for phenol reacting with an electrophile may be seen in IP6

Accept benzene forms monobromo product /
bromobenzene, cyclohexene forms dibromo product / 1,2-
dibromocyclohexane and phenol forms tribromo product /
2, 4, 6-tribromophenol
Allow HBr is produced with benzene and phenol but cyclohexene only forms one product

Allow react under normal laboratory conditions / room temperature and pressure
Allow reference to $\mathrm{AlBr}_{3} / \mathrm{AlCl}_{3}$
This IP can be awarded if benzene equation has catalyst and other equation(s) do not
Ignore references to specific temperatures
Allow delocalised (π) electron ring in benzene is (very) stable
Allow delocalisation of electrons in π bonds which decreases the electron density (of the ring) and makes it less susceptible to electrophilic attack

If neither IP4 or IP5 awarded then allow (1) for benzene has delocalised electrons but cyclohexene does not

Allow the lone pair (of electrons) on the oxygen/OH in phenol
and increases the electron density of the (benzene) ring/overlaps with the delocalised ring

Question Number	Answer	Additional Guidance	Mark

(Total for Question $20=20$ marks)
(Total for Section $\mathbf{B}=51$ marks)

Section C

Question Number	Answer	Additional Guidance	Mark
21(a)	- 2-hydroxybenzoic acid	Accept 2-hydroxybenzenecarboxylic acid Allow minor misspellings such as 2-hydroxylbenzenoic acid Ignore missing hyphen or comma instead of hyphen COMMENT Allow 2-hydroxybenzonic acid	(1)

Question Number	Answer	Additional Guidance	Mark
21(b)(i)	• carboxylic acid and ester and benzene / arene	Accept names given in any order Allow just 'carboxyl' for carboxylic acid Allow just 'carboxylic' Allow phenyl for benzene/arene Allow aromatic ring for benzene/arene	(1)
		Ignore formulae of groups Do not award phenol Do not award carbonyl	

Question Number	Answer	Additional Guidance	Mark
21(b)(ii)	- correct equation	Example of equation:	(1)
		Accept displayed / skeletal formulae COMMENT Allow use of $\mathrm{C}_{6} \mathrm{H}_{4}$ for the benzene ring	
		Do not award molecular formulae	

Question Number	Answer	Additional Guidance	Mark
21(b)(iii)	- calculation of amount of salicylic acid - calculation of theoretical mass of acetyl salicylic acid - calculation of actual mass of acetyl salicylic acid	Example of calculation: mol salicylic acid used $=\frac{2.00}{138}=0.014493(\mathrm{~mol})$ theoretical mass of acetyl salicylic acid $=0.014493 \times 180$ $=2.6087(\mathrm{~g})$ TE on M1 actual mass of acetyl salicylic acid $=\frac{2.6087 \times 74.8}{100}=1.9513(\mathrm{~g})$ TE on M2 provided answer $\leq 5.00(\mathrm{~g})$ OR mass salicylic acid converted $=2.00 \times 0.748=1.496(\mathrm{~g})(1)$ mol salicylic acid converted $=\frac{1.496}{138}=0.01084(\mathrm{~mol})(1)$ mass acetyl salicylic acid formed $=0.01084 \times 180$ $=1.9513(\mathrm{~g})$ Ignore SF except 1 SF Correct answer scores (3) COMMENT If M_{r} values are reversed 1.1469 g scores (2) Allow fractions e.g. salicylic acid moles $=\frac{1}{69}$	(3)

| Question
 Number | Answer | Additional Guidance | (1) |
| :--- | :--- | :--- | :---: | :---: |
| 21(c)(i) | • completed equation | Example of equation: | |

$\left.\begin{array}{|l|l|l|c|}\hline \text { 21(d) } & \bullet \text { methanol } / \mathrm{CH}_{3} \mathrm{OH} & \text { Allow displayed formula / combination of structural and displayed formula } \\ \text { If name and formula are given then both must be correct } \\ \text { Allow methyl alcohol } \\ \text { Ignore reference to acid catalyst/ } \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HCl} / \text { heat } \\ \text { Do not award methanal } \\ \text { Do not award } \mathrm{CH}_{4} \mathrm{O}\end{array}\right]$.

Question Number	Answer		Additional Guidance					Mark
21(e)	- chemical shift ranges for OH and CH_{3} in acetylsalicylic acid - chemical shift ranges for OH and CH_{3} in methyl salicylate	(1) (1)	Example of table:					(2)
				Acetylsa	cylic acid	Methyl	alicylate	
			Type of proton	OH	CH_{3}	OH	CH_{3}	
			Chemical shift $/$ ppm	$\begin{gathered} 10.0- \\ 12.0 \end{gathered}$	1.6-2.8	3.8-7.6	$2.8-4.3$	
			Allow ranges in reverse order e.g. $12.0-10.0$ Allow any range within these ranges $11.8-10.2$ COMMENT If no other mark is awarded, allow (1) for any two correct ranges If no other mark awarded, allow (1) for any three single values within the correct ranges or two single values with one acceptable range					

Question Number	Answer		Additional Guidance	Mark
21(f)	- (M1) calculation of mol NaOH added at start - (M2) calculation of mol HCl used in titration - (M3) calculation of mol NaOH remaining $\begin{equation*} \text { in } 250 \mathrm{~cm}^{3} \tag{1} \end{equation*}$ Process (scaling up of remaining $\mathrm{NaOH} \times 10$) - (M4) calculation of mol acetylsalicylic acid reacted Process (subtraction and then \div by 2) - (M5) calculation of acetylsalicylic acid mass Process (x180) - (M6) calculation of percentage of acetylsalicylic acid and deduction of Brand of tablet Process (\% calc and brand identity) COMMENT An answer of 95% and brand B does not automatically score (6) because 95% can be obtained incorrectly. Check that 0.76 is the denominator for the percentage calculation		Example of calculation: $\mathrm{mol} \mathrm{NaOH}=\frac{25.0 \times 1.00}{1000}=0.025 / 2.5 \times 10^{-2}(\mathrm{~mol})$	(6)
			$\mathrm{mol} \mathrm{HCl}=\frac{16.95 \times 0.100}{1000}=0.001695 / 1.695 \times 10^{-3}(\mathrm{~mol})$	
			(mol NaOH remaining in $25.0 \mathrm{~cm}^{3}=0.001695 / 1.695 \times 10^{-3}(\mathrm{~mol})$) mol NaOH remaining in $250 \mathrm{~cm}^{3}=0.01695 / 1.695 \times 10^{-2}(\mathrm{~mol})$ $\mathrm{mol} \mathrm{NaOH}=0.025-0.01695=0.00805 / 8.05 \times 10^{-3}(\mathrm{~mol})$ mol acetylsalicylic acid $=\frac{0.00805}{2}=0.004025$	
			$\begin{aligned} & \text { mass acetylsalicylic acid }=0.004025 \times 180=0.7245(\mathrm{~g}) \\ & \begin{aligned} \text { percentage of acetylsalicylic acid } & =\frac{0.7245 \times 100}{0.760} \\ & =95.329(\%) \end{aligned} \end{aligned}$ and Brand B	
			Allow TE at each stage Brand / percentage with no working scores (0)	
			Ignore SF except 1 SF in the final mass calculated	
			Ignore incorrect intermediate units	
			Do not credit a division of moles by 2 if carried out before the subtraction	

